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ABSTRACT '

i
Tests were conducted on a single-stage compressor rig to determine !

thefeasibilityofincreasingstatorbladeloadingbeyondcurrentlevelsby i
bleeding or blowing the suction surface boundary layer. The compressor rig i

employed stator hub and tip end wall boundary layer bleeds'. Six highly loaded 'i

stator configurations were tested. One of the configurations employed no -
suction surface boundary layer bleeding or blowing features and was used to "

" establisha performancebase llne.Two statorconfigurationsprovidedfor
suctionsurfaceboundarylayerbleedand theotherthreestatorconfigura-
tionsemployed featurestoreenergizethesuctionsurfaceboundarylayerby
blowing. !

A significantimprovement in stator performance was achieved with

suction surface boundary layer bleed compared to the base line configuration, i
Performance with suction surface boundary layer blowing was generally in-
ferior to that of the base line configuration. !
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SINGLE-STAGE EXPERIMENTAL EVALUATION _

OF BOUNDARY LAYER BLOWING AND BLEED
TECHNIQUES FOR HIGH LIFT STATOR BLADES _"

V. FINAL REPORT*
4

I,

R. J. Loughery• R. A. Horn• Jr. • and P. C. Tramm

Detroit Diesel Allison Division• GM

SUMMARY i

The ob3ective of this program was to determine experimentally the feas-
ibility of increasing stator blade loading beyond current levels by bleeding

or blowing the suction surface boundary layer, i
i

Tests were conducted on a slngle-stage compressor rig. Six stator _.

configurations were tested. The stator design conditions were selected to i

be typical of those found in middle and latter stages of a highly loaded multi- _
stage compressor. Stator hub and tip wall bleed was employed in these
comparative tests to remove the possibility of end wall boundary layer sepa-
ration. Flow in+o the stator was generated by a row of inlet guide vanes and
a state-of-the-art flow geP, erating rotor.

The six stator configurations differed with respect to design loading
level and the suction surface boundary layer control features used in the
designs. A summary of the six stator configurations follows:

Stator blade type No. of Slot location

. Stator hub IDt) (bleed-blowing) slots (q/0chord along suction surface)

0.65 Bleed 1 60
0.65 Blowing 1 424

0.75 Bleed 3 25, 41, 61
0.75 Blowing 1 39.25
0. "/5 Blowing 2 40, 69.5
O. 75 Unslotted --.. ---

_rhis report supersedes NASA CR54§65_ CR54571, CR§4570, CR§4572_ CR54566,
and CR54567, Measurement errors have been found in data presented in these

" reports,

I

I I.
n

o, " . "_ _ _ ?._.r_F= .-- ,-._=......... ,,,:_.,,::..... -_T/,r_._ ............ (, ........ , :_ f _.... =,,o,, , ,_ ,,_

" " '..... " " ' " '_ '_ ' _ _ : i]_ ' ' _ : - "
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The unslotted stator configuration was used to establish a performance "
base line for the 0.75 Df slot't.ed bleed and blowing configurations.

Each stator config_trazion was tested in the single-stage rig to determine
stator blade element performance and stage overall performance. The in-
tent was to determine stator blade element performance at 10, 30, 50, 70,
and 90% span locations. Because of measurement errors, much of the data
was deleted and comparison of the configurations was made at the 50% span
locatidn only. Blade element performance at the midspan location is pre-

,#

sented as loss coefficient, deviation angle, and diffusion factor versus in-
cidence angle, and loss l_arameter versus diffusion factor.

A summary of results based on a midspan blade element performance
comparison follows.

I.A significantimprovement inblade element performance was achieved
with suctionsurface boundary layerbleed compared withthe unslotted'
statorconfigurations.

2o Blade element performance with suctionsurface boundary layerblow-
ing was generallyinferiorto thatofthe unslottedstatorconfiguration.

3. The data suggestthatdesign ofthe slottedblowing statorconfigurations
may not have been optimum. Possible improvements could be obtained
by a modified choice ofsuctionsurface slotlocationand by modifica-
tionsto the blade leadingedge. ,;

.v

Statorend wallbleed improved stage overallefficiencyby about 2
This gain was a resultofbleedingthe hub end wall;the tipend walldid not ._
respond tobleed.

INTRODUCTION

For futuregas turbinepower plants,higher compressor stage pressure
ratios are desired and adequate stage flow range must be achieved at these
increased work levels. Increased stage pressure ratiocan lead toincre:,sed

turning and diffusion for the rotor and stator blades. The result is an in=
crease in diffusion locally near blade suction surfaces which, when increased
sufficiently, causes the useful operation of the airfoils to be terminatedby
severe suction surface boundary layer separation. There is considerable
analytical and empirical evidence that boundary layer separation can be de-
layed by energizing or removing the low energy fluid near the airfoil surface.
In view of these considerations, an experimental program was undertaken in= _.
volving a single=stage compressor rig. The objective of the program was to
determine experimentally the feasibility of increasing stator blade loading
beyond current levels by bleeding or blowing the suction surface boundary

....."li layer.

1:
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Six stator configurations--one unslotted, three slotted blowing, and two
slotted bleed--were tested in combination with an inlet guide vane and flow
generating rotor. Design information for the two slotted bleed atator con-
figuratians and the three slotted blowing stator configurations is contained in
References 1 and 2, respectively. The compressor rig incorporated special
features to re-move low energy fluid from the boundary layer adjacent to the

1

stator hub a_d tip. These features were incorporated to preclude a possi-
bility of stator hub and tip boundary layer separation. Performance of the in-
let guide vane and flow generating rotor is reported in Reference 3. Per-

' " formance of the six stator configurations is reported in References 3, 4, 5.

6, 7. and 8. A review of the stator test data and data reduction procedures
has shown that the results reported in References 3, 4, 5, 6, 7, and 8 are
in error The sources of error are reported in the Apparatus and Proce-
dures section of this report. A reevalu_ttion of the data has shown that a

valid and reasonably complete comparison of performance for the six stator
configurations could be made at the 50% _treamline station only.

This report presents a summary and comparison of the performance
of the six stator confiLurations at the 50% streamline station. Data presented
An this report supersedes all blade element and o_,eraU performance data in
References 3, 4, 5, 6, 7, and 8.

SYMBOLS

A e Elemental area, ft 2

1"W

• Cf Skin friction coefficient, a_q

! c Blade chord, in.
i

Df Diffusion factor

H i Boundary layer shape parameter,

incompressible displacement thickness_
incompressible momentum thickness /

i Incidence angle, degrees (See Figure 3. )

M Mach number

m Bleed rate per blade, lbm/sec

N Rotational speed, rpm



n Number of blades

P Total or stagnation pressure, psia

p Static or stream pressure, psia

q Dynamic pressure, psia (1/2 p V 2)

R R adius, in.

R c Total pressure ratio

S Airfoil surface pressure coefficient. _:_
_q2/

s Blade spacing, in.

T Total temperature° OR
1+

t Blade thickness, in.

t/c Blade thickness chord ratio

U Rotor tangential velocity, ft/sec

V Velocity, ft/sec (See Figure 2. )

Wa Compressor airflow, lbm/sec

Greek

a Streamline angle, degrees (See Figure 2. )

fl Airflow angle, degrees (See Figure 2. )

T Ratio of specific heats

7 ° Blade chord angle, degrees (See Figure 3. ) , i

Ai Range angle, degrees (See Figure 20. )

!

4# Turning angle, degrees _R = J@_ - f12' _S ffi f12 " _8 )

a Ratio of stage inlet total pressure to standard s_a level pressure

I of 14.7 psia

+_! + 4

i_'ml

o + . . . "
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Deviation angle, degrees (See Figure 3. )

t Circumferential rake setting angle, degrees

Efficiency

" # Ratio of stage inlet total temperature to standard sea level temperature
of 518.6°R

' " x Blade metal angle, degrees (See Figure 3. )

P Static or stream density, lbm/ft 3

_r Blade row solidity, (c/s)

_w Wall shear stress, lbf/ft 2

$ Camber angle, degrees (See Figure 3.)

Local to_al pressure loss coefficient (See Equation A6. )

_ i Blade element total pressure loss coefficient (See Equation AT. )

Subscripts/

!i ad Adiabatic
L!

iJ fs Freestream
h Hub

;;

ma Mass flow averaged

rain Minimum

neg Negative

. pos Positive

R Rotor

S Stator

ST Stage

t Tip

! :1i 5
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z Axial direction
0 Tangential direction
0z Tangential-axial plane
0 Guide vane inlet

I Rotor inlet or guide vane exit

2 Stator inlet or rotor exit
3 Stator exit • _,_

Superscripts
m Relative to rotor - i

DESIGN

The test rig used in this program was designed to test stators with hub

loading levels of 0.65 and 0.75 Df.

A row of inlet guide vanes and a flow generating rotor were designed
within the current state of the art to provide the selected inlet conditions to
the stators. The flow path dimensions are shown in Figure 1. The design
values of the flow generating rotor were:

Wa,_"/8 = 88.2 Iblsec

Re, R = 1.37 i

V/ad, R = 88.8%

N/N_- = 8367 rpm (1095 ft/sec tip speed) ,

Rh/R t (rotor inlet) = 0.683

Df rotor tip = 0.414

The design of the inlet guide vane and rotor is reported in Reference 2.

_i_ The stator inlet hub Mach number was 0.75 at an inlet flow angle of
54 degrees and the stator inlet hub-to-tip radius ratio was 0.696. The stator
blade airfoil section selected was a 65-series thickness distribution with a

_::_i" circular arc mean-line shape. Stators were designed at hub loading levels .

_o--!_i of both 0.65 and 0.75 Df.

Nomenclature used for velocity diagrams and blade description is
shown in Figures 2 and 3. The rotor design velo_,ity,' diagr&r-s are shown

in Figure 4. The design velocity diagrams for the 0.65 Df and O. 75 Df
stators are shown in Figures 5 and 6. Since the radial component of

° / velocity is relatively small, values of V are sho_ in velocity diagrams

I in places where V0z, literally, should be shown.

6
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Stator blade airfoil properties are given in Table I. These properties
were used for both slotted and unslotted configurations. One unslotted and five
_-1._tted stator configurations were designed. A summary of these configurations
follows:

Slot location i
" Stator hub Stator blade type No. of (_/0chord along suction

(Df) (bleed-blowing) slots surface) *i

" 0.65 Bleed 1 60
0.65 Blowing 1 42
0.75 Bleed 3 25, 41, 61
0.75 Blowing 1 39.25
0.75 Blowing 2 40, 69.5
0.75 Unslotted ......

Blade sections for these configurations are shown in Figure 7. These
stators were cast with a hollow core and only two basic designs were made, i.e.,

0.65 and 0.75 Df. For the blowing slotted configurations, high pressure air
was ingested on the pressure surface at the blade leading edge• This air passed
through a cored section of the blade and was discharged through a slot or slots
on the suction surface. The design of the blowing slotted stators is reported in
more detail in Reference 2 For the bleed slotted configurations, air from the l-
suction surface of the blade was bled through a slot or slots into the core which
was connected to an external pumping source. The design of +.he bleed slotted
stators is reported in more detail in Reference I.

APPARATUS AND PROCEDURES

TEST FACILITY

A general arrangement of the test facilRy is shown in Figure 8. Air
entered the test compressor after passing through the test facility filter
house, an inlet duct, plenum° and bell mouth, and was exhausted to the at-
mosphere through a diffuser. Provisions existed for maintaining compressor
inlet pressures above or below atmospheric, if necemJary.

, COMPRESSOR TEST RIG

The mechanical arrangement of the compressor test rig was similar for
. all testing. The only differences were the stator configuration incorporated

in the rig and, in the case of the slotted bleed stator tests, a connection to a !
vacuum source to remove the bleed air. A typical layout of the compressor
test rig for a slotted bleed stator test is shown in Figure 9. Provision was
also made in the rig for bleeding the wall boundary layers at stator tip and ,_
hub. This was accomplished by fabricating the stator flow passage walls

7

o .... • o .... ,_
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from 0.010 in. thick perforated sheet metal. Manifolds behind the perforated
metal surfaces were connected by multiple tubes to separate vacuum headers for

tip and hub wall bleeds. A pressure drop was maintained across the porous wall .i
during all testing to ensure the structural integrity of the perforated metal.

INSTRUMENTATION

Instrumentation was provided to obtain blade element performance for , o
the stator and stage overall performance. Figure 1 defines the axial loca-

tion of the various instrumentation planes. The following is a summary of
the instrumentation _ used in each plane:t •

• Inlet plenum
• 6 single-element total pressure probes
• 2 six-element radial total temperature rakes
• 2 outer wall static pressure taps

• Rotor inlet (Station I)
, |

• 3 radial traverse combination total pressure and yaw angle probes
• I radial traverse wedge static pressure probe
• 4 outer wall static pressure taps

• 4 inner wall static pressure taps
• Stator inlet (Station 2)

• 3 radial traverse combination total pressure, total temperature, and
yaw angle probes

• 2 radial traverse wedge static pressure probes
• 4 outer wall static pressure taps

_[ili • 4 inner wall static prossure taps• 2 fixed hot wire annemometers

• 1 radial traverse hot wire annemometer _,.
• Sta_or exit (Station 3)

' • 1 radial traverse 16-element circumferential total pressure rake !

• I radial traverse combination total pressure, total temperature, and
yaw angle probe

• 2 radial traverse wedge static pressure probes
• 4 five-element radial total temperature rakes
• 1 outer wall five-element total pressure boundary layer rake
• I inner wall five-element total pressure boundary layer rake
• 4 outer wall static pressure taps
• 4 inner wall static pressure taps

i

OVERALL AND BLADE ELEMENT PERFORMANCE DATA

Overall and blade element performance data were obtained at five points ,
per speed line to define rotor or stage performance between choke and stall.
The stage stall point was defined as the onset of a steady stall cell indication
on the hot wire anemometers. One of the five points on each speed line was

a near-stall setting which permitted a full data point recording. At each full
data point, fixed and traverse pressure and temperature data were recorded

at five radial locations at the stator inlet and exit measurement planes.
H n

*This instrumentation is discussed in Reference 3.

8
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iDATA EDITING

Review of the data obtained during the stator testing indicated that an
error exists in the information presented in References 3, 4, 5, 6, 7, and i
8. The circumferential rake at stator discharge was designed to survey a _

passage between adjacent blades with the leading edge of the rake perpendic- i
• ular to the compressor axis. Preliminary test results indicated that the

air angle at stator exit was considerably different from the design intent.
A decision was made to rotate the wake probe to provide better alignment

• of the probe with the stator exit air angle. The rake angle used in each
test is shown in Table II. Unfortunately, the fact that the probe had been re-
set was not accounted for in the reduction of data. This resulted in an error

in the mass averaging of the data circumferentially. Also, for a large part
of the testing the yaw probe at stator exit was in the blade wake, making its
angle reading of doubtful accuracy. These inequities in the data resulted in
a complete reevaluation of all data obtained. The following data editing
criteria were used to establish the validity of the data.

1. Air angle at stator exit measured by the yaw probe was not used when
the yaw probe was in the stator wake. This condition was determined
by identifying the yaw probe with a circumferential rake element in the
same relative circumferential location. The wake was defined as an

area of steep total pressure gradient as measured by the circumfer-
ential rake.

2. Total pressure at the stator exit measured by the circumferential rake
was not used when the element of the rake corresponding to the same

relative circumferential position as the yaw probe differed in reading by ,..._.
more than 0.5 in. Hg from the yaw probe reading.

At the 50% streamline station about one-half of the data met the first
criterion and about three-fourths of the data met the second criterion. At
the 30 and 70¢/0 streamline stations about one-tenth of the data met both cri-
teria. At the 10 and 90% streamline stations about one-seventh of the data

met both criteria. The results of the data editing led to the decision to pre-
sent only the blade element data obtained at the 50% streamline station. The

• data at the 50% streamline station which satisfied both criteria ELregiven in
Table HI. The effect of exit air angle on the calculation of _ is minimal.

. Therefore, additional data at the 50% streamline station which met only the
second criterion are ,h_cluded in the _ vs incidence plots to provide a more
complete picture of the stator loss characteristics.

el

DATA REDUCTION

Data reduction was performed by two separate computer programs. The
first program was used to calculate overall stage performance, stator

00000001-TSC06
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blade element performance and wall bleed flow rate. Calculations were carried
out for the five streamlines which passed through the 10, 30, 50, 70, and 90%

span stations at the stator inlet measurement plane. The second program was
used to determine the stator blade static pressure distribution and calculate
the blade boundary layer control blowing and bleed flow rates. Calculations
were performed at the 100 50, and 90% span station which corresponded to
the locations of the blade static pressure instrumentation. A summary of the
equations used in these two programs is given in the Appendix.

In many cases, redundant data were obtained. When redundant informa-
tion was available for a particular quantity, the consequences of selecting
the various options were investigated and a judgment was made as to the
best option. The following is a list of sources of data used in the data re-
duction programs to calculate velocity triangles:

$ Statorinlet(Station2)

• Staticpressure (p2)vs radiusmThe four staticpressure readings
Were arithmeticallyaveraged at the outer and inner walls;static

, pressure was obtainedas a linearinterpolationfrom these average
wall st,-.ticpressures. Since wall curvature and convergence were
small, linearinterpolationwas a good approximation. Reference
3 presents a discussion ofthe merits ofthisprocedure incompari-
son with the use of readings from the radialtraverse wedge static
pressure probes.

• Total pressure (P2}0 totaltemperature (T2), and yaw angle (_)
vs radius--An arithmeticaverage ofthe readings from the-t_ee
radialtraverse combination probes was used. °i

• Statorexit(Station3)

• Staticpressure (p3) vs radius--The four staticpressure readings
Were _rithmeticall_,averaged at the outer and inner walls, and
staticpressure was obtainedas a linearinterpolationfrom these
average wailstaticpressures.

• Total pressure _(P3,ma )vs radius--The radialtraverse 16-element
circumferentla},totalpressure rake data were used to obtaintotal
pressure at each radiallocation. The rake data were mass flow i

averaged across one blade gap according to Equation {A8)inthe
Appendix. ',

• P 3Total tem erature (T) vs radius---The readings from the four '_
:_ five-element radial total temperature rakes were arithmetically -_:

, averaged at each of the five radial locations.

• _3) vs radius---The radial traverse combination probe °
was used to obtain yaw angle.

Stator Blade Element Performance

_, Synthesis of the velocity triangles at stator inlet and exit provided the

_/__' required information to calculate diffusion factor, deviation angle, and
i

1(}
" ' / i
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incidence angle according to Equations (A3)0 (A4), and (AS) of the Appendix. i
Blade element total pressure loss coefficientwas calculated by Equation
_A7) of the Appendix. The numerator of Equation _A7) is one minus stator

total pressure recovery. The choice was made to define recovery as mass
flow averaged total pressure at stator exit_Equation (A8)--divided by the i

. maximum totalpressure as read by the 16-element circumferential rake,

P3, fs" Usir _ P3, fs in preference to an arithmetic average of the three

radial tra,re .se combination probes at stator inlet, P20 is a difference which
exists in the stator blade element data presented in this report and the datam

previously presented in References 3, 4, 5, 6, 7, and 8.

Total Pressure Loss Coefficient Contour Plots

Stator l_l total pressure loss noefficient for contour plots was ob-

tained using _.,uatiov (A6) of the Appendix. The quantity P3 is a function of
both radius and tangential location. It was obtained from the radial traverse

16=element circumferential rake and was divided by P2, the average of the
three radial traverse combination probes at stator inlet. A preference was

made for P2 rather than P_ fs in these presentations of data to give a more
accurate evaluation of the e_cl-wall effects.

Stage Overall Performance _ °

The quantities required to define stage overall performance were obtained
by use of the following procedures.

• Stage exit totalpressure (P3, ma)°Circumferentially mass flow averaged ....,
total pressure at stator exit (P3,ma vs radius) was mass flow averaged
radially to obtain the required average stage exit totalpressure.

Q Stage exit totaltemperature (T3, ma)_-The arithmetically averaged total

temperature rake data at stator exit (T 3 vs radius) was mass flow aver-
aged radially to obtain the required average stage exit total tempera- _.
ture.

Q Stage inlet total pressure (Po)---The six single-element total pressure i
probes in the inlet plenum were at varying radial depths. The total
pressure was assumed to be uniform circumferential]y, and stage inlet
total pressure was obtained by radially mass flow averaging the total

. pressure as measured by these six probes.

Q Stage inlet total temperature (T0)--Inlet plenum total temperature was
averaged for the two rakes at each of the six radial Iocatlons, and stage

inlet total temperature was obtained by radially mass flow averaging
the inlet plenum total temperature.

The stage inlet airflow was measured with an ASME orifice located in
each branch of the triple inlet header upstream of the inlet plenum. Weight
flow was corrected to stage inlet conditions according to Equation (AI), and

stage efficiency was calculated according to Equation (A2) of the Appendix.
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DISC USSION OF RES ULTS

The following discussion is divided into categories of overall stage per-
formance, ctator blade element performance, and evaluation of stator blade
boundary layer control methods. Stator end-wall bleed was in effect for all
data being discussed. Selection of optimum stator hub and tip end-wall
bleed rates was accomplished in a_ early phase of the test program. Data
from this phase of testing are presented in the discussion of overall stage per-
formance and demonstrates the effect of three stator end-wall bleed flow
rate_: on performance. All data discussed under stator blade element per-
formance were obtained with optimum stator end-wall bleed flow rate. In
this portion of the discussion, stator blade element data at the 50q/ostream-
line location for the six stator blade configurations are compared to deter-

mine relative performance merits. The unslotted 0.75 Df stator is used as
a performance base line for the 0.75 Df slotted stator comparisons. The final
portion of the discussion• evaluation of stator blade boundary layer control
methods • is a brief evaluation of the design of the stator blade bleed and blow-
ing configurations using current boundary layer prediction methods.

OVERALL STAGE PERFORMANCE

Fi2ures 10 and 11 show the overall stage performance for the unslotted
0.75 hub diffusion factor stator at three stator end-wall bleed flow rates.

Performance of thio configuration is considered representative of all configura-
tions tested. The optimization of wall bleed (Reference 3) was performed only
on this configuration and only at design speed.

Overall stage performance at design speed for this configuration and for
the three stator end-wall bleed rates compares with the design performance
as follows:

Stage Optimum Mean Min
design wall bleed wall bleed wall bleedle i e ii

Wa__8 at design
Re• ST --Ibm/see 88.2 93.6 94.0 93.1

Rc ST at design

_a_-/8 1.35 1.39 1.40 1.38

_ad• ST at design
Rc. ST--% 85.5 _6.8 85.8 84.7

Tip bleed as _ of

Wa inlet .... 2.00 1.44 0. 87

Hub bleed as % of

Wa inlet --- 2.45 2.09 1.18

, I: n
l "
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Within instrumentationaccuracy, there was no s_gnificanttrend ofstage
inletcorrected airflowwithbleed rate. However, meas'ired stage Inh:t
corrected airflowwas approximately 6% higher than the design value. The
unexpected high flow was a consequence ofactualrotor blade deviationangle
being lessthan design values and actualrotor minimum loss incidenceangle
being more negativethan design values. Peak stage efficiencyat :lesign

speed occurred near design pressure ratio. Statorend wall bleed improved
stage overaU efficiencyby aboat 2%. This gainwas a resultof bleedingthe hub
end wall;the tipend wall did not respond to bleed.#

Figures 12, 13, and 14 are contour plotsof statorlocaltotalpressure
loss coefficientatdesign speed with minimum, mean, and optimum stator
end-wall bleed• Itis evidentfrom these losscoefficientcontour plotsthat
the increase in overallstage efficiencywas almost entirelythe resultofhub
wall bleed. Statorloss coefficientsin the outer one thirdofannulus were es-

sentiaUy unresponsive tobleed flow rate over the range ofvalues investigated•
Because the method ofbleed atthe hub and tipwall was the same, the different
character ofresponse tobleed is attributedtoflow conditionsnear the stator
tipbeing dissimilarto flow conditionsnear the statorhub.

STATOR BLADE ELEMENT PERFORMANCE

The statorblade element performance resultsin thefollowingdiscussion
are those obtainedatthe 50% streamline positionand were obtainedwith opti-
mum statorend-wall bleed. Corrected airflowwas modulated ata given cor-
rected speed to produce a range ofstatorincidenceangle. Data were re-

corded over a range ofincidenceangle at 60, 80, 90, I00 and 110% ofdesign ._
speed• Statorblade element inletMach number was relativelyconstantata
given corrected speed over the range of flows for which data were recorded.
The range of statorblade inletMach number for the 50% streamline for all
data recorded at a given corrected speed is as follows:

C?rrected speed (% ofdesign) M_ at 50% streamline

60 0.40 - 0.44
80 0.54 - 0.59
90 0.59 - 0.66

• 100 O. 64 - O. 75
II0 0.71 - 0.79 "

4

• Statorblade element performance ispresented infiguresas the varia-
tionof loss coefficient, deviation angle, and diffusion factor with incidence
angle and as the variation of loss parameter with diffusion factor• Lines
have been drawn through the data at design speed in these figures to high-

_i: i light data trends. Because the data from the various configurations generally

'..,, 13
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show a consistent trend with corrected speed, the discussion of results will
refer to data at design speed unless otherwise specified. In the figures
which present loss parameter as a function factor, a line is provided which
represents two-dimensional cascade data (Figure 149 of Reference 9).

Design point values of incidence angle, loss coefficient, loss parameter,
deviation angle, and diffusion factor are denoted in the figures which pre-
sent stator blade element performance. In comparing data with these de-
sign point quantities, it may be helpful to review briefly the background

' for selection of these design point quantities. Design point incidence was
selected to provide flow stagnation at the leading edge. This selection was con-
sidered to be a desirable condition for the bleed and blowh_g configura-
tions and not necessarily optimum for the unslotted configuration. The values
of design point loss coefficient and lbSg'barameter were selected to provide
a target level of loss which was between one-half and two-thirds of that pre-
dicted for unslotted stator blade elements. The design point diffusion factor
at the 50% streamline was somewhat lower than at the hub as a consequence of

m

the radial variation in velocity diagrams and stator blade solidity. Design
point deviation represented an estimate of stator blade element deviation with
boundary layer control. Additional detail on considerations relative to selec-
tion of these design point quantities may be obtained from the design reports
(References 1 and 2).

The stators in the following discusqion are identified by their design hub
diffusion factor, number of slots, and +"pe of boundary layer control (suc-
tion surface bleed or blowing). A summary of the six stator configurations,
including slot location, and design slot flow is as follows:

Slot location

Stator loading No. of slots (%chord along Design slot flow
(Df at hub) (type) suction surface) (% stage inlet flow)

0.75 Unslotted ......
0.75 3---bleed 1--25.0 1.50

2--41.0
3--61.0

0.75 1--blowing 39.25 1.34
0.75 2mblowing 1--40.0 1.92

2--69.5 " !

O.65 1--bleed 60.0 1.80 _
0.65 1---blowing 42.0 1.08 :_

J

There was no provision for measurement of slot flow during testing of
the three blowing stator configurations. Slot flow was measured during testing
of the two bleed stator configurations.

t
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During testing of the O. 75 Dftriple-slotted bleed stator0 three l_/vels ofsuction surface boundary layer bleed rates were appalled to the statoi. These
were classified as the optimum bleed rate, mean bleed rate, and zero bleed

rate. The optimum bleed rate is defined _s that which analytically removes

one-third of the local boundar_ layer at each slot location _Reference 1). Op-
timum and mean bleed rates expressed as a percent of stage inlet flow are

shown ia Figures 15 and 16 as a function of stage press_:re ratio and percent

of design corrected speed. In the discussion of results for the 0.75 Df triple-
slotted bleed stator, bleed rate used was the optimum rate unless otherwise

' " specified.

During testing of the 0.65 Df single-slotted bleed stator, three levels of
suction surface boundary layer bleed rates were applied to the stator. These
were classified as optimum bleed rate, 2/3 optimum bleed rate, and 1/3

optimum bleed rate. Optimum, 2/3 optimum, and 1/3 optimwu bleed rates
expressed as a percent of stage inlet flow are shown in Figures 17, 18, and

19 as a function of stage pressure ratio and percent of design corrected speed.

In the discussion of results for the 0.65 Df single-slotted stator, bleed rate
used was the optimum rate unlesQ otherwise specified.

Quantities which are used in the following discussion to assess the rela-

tive merits of the various stator configurations are illustrated in Figure 20.
They are defined as follows:

m3, min--minimum value of w3 at a given corrected speed

i2, rain---value of i 2 at which _3, rain occurs

Df3 ' rain--value of Df3 at i2, rain

8_, rain--value of 83 at i2, rain

i2, neg--value of i 2 less than i2, rain at which _3 = _3, mixL + 0.05

i2, pos--value of i 2 greater than i2, rain at which a 3 = _3, rain + 0.05

Df3 ' pos---value of Df3 at i2, pos

Ai2--'quantity (i2, pos " i2, neg )

The quantities i2, neg and i2, pos are chosen to indicate the onset of high
" loss coefficients at incidences more negative and more positive than i20 rain,

respectively. The definition of i2, neg and i2, pos is arbitrary and is in-
tended to represent approximately the uoeful limits of operation of the stator ;_

ii_[ blade element" The quantity £i2 is referred t° as range in the f°ll°wingdiscussion, i

_ _ 15
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Values of the eight quantities, i3, rnin, i2, rain, Df3 ' rain' S3, rain.

i2, neg, i2, pos, Df3, pos' and Al2, have been listed in Table IV for design speed
blade element performance of the six stator configurations. In some cases,
definition of values for Table IV hae required extrapolation of data. Where
extrapolations have been required, an asterisk has been placed adjacent to
the value. Values in Table IV which have been left blank were judged to re-
quire excessive extrapolation.

Comparison of Slotted vs Unslotted Stators

The 0.75 Df unslotted stator will be used as a base line for comparing

the three 0. 75 Df slotted stators in the following paragraphs, i

0.75 Dr Triple-Slotted Bleed Stator vs 0.75 DI. Unslotted Stator

The performance of these two configurations is shown in Figures 21a and
2lb. _t_.formance at design speed may be compared as follows:

(deg) (deg) Df3____o_ (deg)

0.75 Df umslotted -5.0 0.042 0.64 13.0 -14.4. 1.5 0.71. 15.9

0.75 Df triple-slotted
bleed (optimum) -0.5 0.014 0.70 10.0 -13.5* 7.0 0.77 20.5

Design -3.0 0.042 0.70 18.0

*These vatues have been extrapolated from the data in Figure 21a.

l

This comparison shows that the triple-slotted stator had a lower
minimum loss coefficien% a lower deviation angle, higher Df at minimum
loss incidence, and larger range than the unslo_ted stator. Increased "!
range was achieved principally by increased ability to operate at more i

positive incidence (increased i2,Pos). Compared to design values, the i
triple-slotted bleed stator achie_fed design loading at about _ degrees ii
more positive incidence angle and was accompanied by a lowerS-than-design !
loss coefficie.nt. Deviatior, angle was less than the design value by about 8
degrees. iFigure 21b illustrates that the triple-slotted stator had generally lower
loss parameter and higher diffusion factor than the unslotted stator. Loss

parameter of the trip,.e-slotted bleed stator at i2, rain was approximately
one-half of the refereace value for two-dimensional cascades.

The comparisons of Figure 21a and 21b indicate that the 0.75 Df triple-
slotted bleed stator was far superior to the 0.75 Df unslotted stator.

16
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0.75 D_ Triple-Slotted Bleed Stator With Zero Bleed vs 0.75 Df
_t_ed Stator

The 0.75 Df triple-slotted bleed stator was evaluated for blade element
performance at three suction surface boundary layer bleed rates. One of
these was zero bleed rate. Blade element performance at zero bleed rate

for the 0.75 Df triple-slotted bleed stator provides an interesting com-
parison with the 0.75 Df unslotted stator. Unfortunately, yaw probe data at the
stator exit were generally in error for the zero bleed rate investigation and
data were obtained only at design corrected speed. With these limitations,
the comparison is made on the basis of loss coefficient versus incidence
angle only and is shown in Figure 22. A summary of the comparison shown
in Figure 22 follows:

i2, rain t2, neg i2, pos &t2
Configuration (des) W3, mln (des) (de s) (deg)

0.75 Df unstotted -5.0 0.042 -14.4. 1.5 15.9

0.75 Df triple-slotted
bleed (zero) 1.0 0.091 -9.1 5.3 14.4

*These values have been extrapolated from the data in Figure 22.

P

Thi_ summary shows that minimum loss coefficient of the triple-slotted
stator at zero bleed was about twice as high as for the unslotted stator. Range

of the two configurations was about the same. Values of i2, rain, i2, neg0
and i2, pos for the triple-slotted stator at zero bleed occurred at about five
degrees more positive incidence angle compared with corresponding values
for the unslotted stator. ,

The comparison in Figure 22 shows that the 0.75 Df triple-slotted bleed
stator operating with zero net suction surface boundary layer bleed had
about twice the loss of the 0.75 Df unslotted stator. This comparison SUE°
gests that substantial detrimental recirculation existed into and out of the

slots of the 0.75 Df triple-slotted bleed stator when operated with zero net
bleed.

0.75 Df Single-Slotted Blowing Stator vs 0.75 Df Unslotted Stator

Performance of these two configurations is shown in Figures 23a and

23b. There is insufficient data to define i2, pos and, therefore, Ai 2 of the
blowing stator. With these exceptions, the tfvo configurations may be com-
pared at design corrected speed from Figure 23a as follows:

17



i2. min _3. rain t2 t neg ,I

Configuration (deg) _3___n Df3° min (deg) toegl ,_

0.75 Df unslotted -5.0 0. 042 0.64 13.0 -14.4*
_Jt

0.75 Df single-slotted
blowing 2.0 0. 078 ....... 5.6

Design -3.0 0. 042 0.70 18.0

*These values have been extrapolated from the data in Figure 23a. i

This comparison shows that the single-slotted blowing stator had a higher

minimum loss coefficient and a more positive i2, e than the unslotted sistern g
Figure 23a shows that the single-slotted blowing stator exhibited a trend of
decreasing deviation with increased incidence unlike the unslotted stator and
achieved a somewhat lower loss coefficient at incidences greater that', about

one degree, Figure 23b also indicates that the single-slotted blowing stator had
generally higher loss than the unslotted stator.

The comparison given in Figures 23a and 23b indicates that the 0.75 Df
single-slotted blowing stator was generally inferior to the 0.75 Df unslotted
staler. Note also, that minimum loss occurs at a much higher incidence with

the single-slotted staler. The poorer performance of th_ single-slotted blowing i ,
stator at negative incidence angle may be an indication of a problem with flow

in the region of tl,e blade leading edge associated with the source of the blowing i
stream also located in the region of the blade leading edge. !

t

0.75 Df Double-Slotted Blowing Stator vs 0.75 D_ Unslotted Stator i /""_'

Figures 24a and 24b show the performance of these two configurations.
A comparison of the two configurations at design corrected speed from Figure
24a follows:

,degÁ ,de.___!
0.75 Df unsiotted -5.0 0,042 0.64 13.0 -14.4" 1.5 0.71" 15.9

0.75 Df double-slotted
blowing 1.2 O. 052 O. 70 15. 5 -6.8 4.9 O. 74. 11. ? .

Design -3.0 0.042 0.70 18. 0

*These values have been extrapolated from the data tn Fi_tre i4 a.
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This comparison shows that the double-slotted blowing stator had on the
order of 25% higher minimum loss coefficient, achieved higher loading at
minimum loss incidence angle, and had about 4 degrees lower range than
the unslotted stator. Qualitatively similar to the previous comparison.
the blowing stator in this comparison exhibited poorer performance at more

negative incidence angles and a shift in the minimum loss point to a positive _
incidence compared with the unslotted stator. The markedly poorer perform-
ance of the double-slotted blowing stator at more negative incidence accounted

for its reduced range compared with the unslotted stator. Figure 24b also shows
that loss of the double-slotted blowing s_c,,_r was somewhat higher than the un-slottedstator.

The comparison of Figures 24a and 24b indicate that the 0.75 Df double-
slotted blowing stator was generally somewhat inferior to the 0.75 Df unslotted
stator. As in the previous comparison, the unslotted blowing stator
exhibited poorer characteristics at more negative incidence angles and a shift in
the minimum loss point toward more positive incidence as compared with the un-
slotted stator. The recurrence of this characteristic confirms the indication of a

leading edge flow problem for blowing stators of this type. iii

Cross-Comparison of Various Slotted Stator Configurations

The following paragraphs present comparisons of stator blade element
performance on the basis of the effects of the number of slots, the effects of ,_
suction surface boundary layer bleed rate, the effects of bleed vs blowing
slots, and the effect of loading level.

0.75 Df Single-Slotted Blowin_ Stator vs 0.75 Df Double-Slotted
Blowing Stator

The performance of these two configurations is shown in Figures 25a and

25b. There is insufficient data to define i2, pos and range for the single-
slotted blowing stator. With these exceptions, the two configurations may be
compared az design corrected speed from Figure 25a as follows:

t2, mLn -- n t2,. neg '_
Configuration (deg) e3, rain Df3 t mtn • (aeg)

0.75 Df single-slotted _,

0.75 Df double-slotted
- blowing 1.2 O.062 O.TO 16. 5 -6.8

Design -3.0 0.042 0.70 18.0

i,
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Both configurations had approximately the same value of i2, min,
i2, neg0 and 8 %, min. The pr_,mary difference between the configurations was _:7

that the single-slotted stator had about 50% higher minimum loss coeffi-
cient than the double-slotted stator. The generally higher loss of the single-

slotted stator is shown by data presented in Figures 25a and 25b. i
The comparison given in Figures 25a and 25b indicates that the 0.75 :_

DlodOUble-slotted blowing stator was superior to the 0.75 Df single-slotted
wing stator. The slot arrangement of these two configurations is shown

r

in Figure 7. Both stator blades had a slot located at approximately 40% of
chord. The double-slotted blades had an added slot located at about 70% of
chord. The performance comparison given by Figures 25a and 25b suggests
that the added slot located at 70% of chord in,proved blade element perform-
ance.

Effect of YJleed Rate for 0.65 Df Single-Slotted Stator

The blade element performance of this configuration as affected by
suction surface boundary layer bleed rate is shown in Figures 26a and 26b.
A summary at design corrected speed of the comparison shown in Figure 26a
follows:

12, rain 803, rain i2o neg i20 pos Ai2 i

Bl...,e,_dr_._aate (deg.___) W'B. min Dr3. m/n (deg) (deg) (deg) Dr3, po6 (deg)

Optimum 3.0 0. 007 0.58 8.0 -3.6 9.0* 0.68* 12.6

2/3 optimum 2.7 0.014 0.54 .... 8.2* 8.8* 0.63* 15.0 :

1/3 optimum 2.0 0.010 0.52 8.0" -2.8* 8.4* 0.63 11.2 _, ' "

Design 3.0 0.040 0.60 1{,. 0
i

*These values have been extrapolated trom data in Figure 28a. i

I

This summary does not indicateany strong or consistenttrends of i

statorblade element performance with variationin suctionsurfaceboundary t
layer bleed rate over the range tested. The losses are low compared to design t
and variations with bleed flow rate are within data accuracy. Figure 26b does not , i
illustrate any significant trend of loss parameter with bleed flow rate.

20
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Figures 26a and 26b indicate that the performance of the 0.65 Df single=
slotted bleed stator was relatively independent of suction surface boundary

layer bleed rate over the range of bleed rates tested.

0.65 Df Single-Slotted Blowing Stator vs 0.65 Df SinBle-Slotted Bleed

i

No unslotted 0.65 Df stator was evaluated. The only comparison avail- 1
ab;e at 0.65 Df is between a bleed and a blowing stator. This comparison !

" is shown in Figures 27a and 27b. A summary at design corrected speed of '_
the comparison given by Figure 27a follows:

8"3, rain i2, neg i2, pos 412
Configuration it_egqin _ Df3, rain (deg) (deg) (deg) Dr3, pos (deg__._)

0.65 Df single-slotted i
blowing 3.7 0. 042 0.47 16.5 0* 8.0 0.6_ 8, 0 r'_

0.65 Df slngle-slotted
bleed (optimum) 3.0 0. 007 0.58 8. O -3.6 9.0* 0.68* 12.6

Design 3.0 0. 040 0.60 10.0
J

*These values have been extrapolated from the data in Figure 27a.
i
,p

This summary indicates that the 0.65 Df single-slotted bleed stator

had lower minimum loss coefficient, a more negative i 2 ne_, a larger range,

higher loading at mtmmum loss lnc_dence angle, and lower _eviation angle i
than the 0.65 Df single-slotted blowing stator. The 0.65 Df single-slotted
bleed stator blade element performance compared closely with design values
of incidence angle, diffusion factor, and deviation angle. Minimum loss co- !

efficient of the bleed stator was in the order of one-sixth of the design loss
coefficient. Data presented in Figures 27a and 27b show that the 0.65 Df single- |

slotted bleed stator had much lower loss than the 0.65 Df single=slotted blow-
ing stator. Minimum loss parameter of the 0.65 Df single-slotted bleed stator

i

was lower than the reference line for two=dimensional cascades.

The comparison given in Figures 27a and 27b indicates that the 0.65 Df
single-slotted bleed stator was superior in performance to the 0.65 Df single-
slotted blowing stator.

Effect of Bleed Rate for 0.75 D_ Triple-Slotted Bleed Stator
d

The blade'element performance of this configuration as affected by suc-

tion surface boundary layer bleed rate is shown in Figure 28a and 28b, A
summary at design corrected speed of the comparison shown in Figure 9-8a
follows:

i:
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12, rain r3. rain i2, neg i2, pea Ai 2 :

Bleed rate (deg) _3,....___mi__n Dr3, man (deg) (deg) (de_) Dr3, pea (deg._._) t

Optimum -0.5 0,014 0.70 I0,0 -13.5. 7.0 0.77 20.5

Mean -1.4 0.026 0.66 II.0" -13.6" 6.3 0.76 19.9 i
Zero I. 0 0.091 ....... 9. l 5.3 --- 14.4

i

Design -3.0 0.042 0. "70 18.0

*These values have been extrapolated from the data in Figure 2Ba.
, i

This summary indicates that optimum bleed rate resulted In about one
half the minimum loss coefficient as compared with the meal, bleed rate.
Minimum loss coefficient at both optimum and mean bleed rate was well below
the design loss coefficient. Comparison of optimum with mean bleed rate
for other blade element performance quantities in this summary indicates
no significant trend within the accuracy of the data. Blade element perfor-
mance at zero bleed rate was greatly deteriorated. Minimum loss coeffi-
cient was about twice the design loss coefficient and the range was about six
degrees lower than the range obtained with optimum bleed rate. The data
at 80% of design corrected speed in Figure 28b also shows that the loss
coefficient of this staler configuration was lower when optimum suction sur-
face bleed rate was applied as compared to mean bleed rate. J

Figures 28a and 28b indicate that best blade element performance of the

0.75 Df triple-slotted bleed stator was obtained at optimum bleed rate. A
mild deterioration of performance resulted when bleed flow rate was reduced t

from the optimum level to the mean level, and a large deterioration of per- ._
formance resulted when bleed flow rate was further reduced from the mean
level to zero. In fact, at zero bleed, losses were higher than for the unslotted
blade.

i 0. T5 Df Double-Slotted Blowin[_ _tator vs 0.75 Df Triple-Slotted Bleed

The better of the two 0.75 Df slotted blowing stators has been chosen to !
compare with the 0.75 Df triple-slotted bleed staler. Figures 29a and 29b

" show the performance of these two configurations. The two configurations
may be compared at design corrected speed from Figure 29a as follows:

i2. man 8"3. rain i_anl_g i3, pos AiS "
Cor_iguration (deg) S3, rain Df3. man (deg) taeg_ _ (deE)

0.75 Df double-slotted

blowing 1, 2 O. 053 O. 70 15. 5 -6.8 4.9 O. ?4* 11. ? '

O. 75 Df triple-slotted
bleed {optimum) -0.5 O. 014 O. 70 10.0 -13.5' ?. 0 O. 77 30.5

Design -3.0 0.043 0. "/0 16.0

.: *These values h, ve been extrapolated from the data in Filpare 39a.
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The 0.75 Df triple-slotted bleed stator had performance equal to or
better than the performance of the 0.75 Df double-slotted blowing stator for
all quantities compared from Figure 29a. Particularly outstanding quantities q
to compare are loss coefficient and range. Data presented in Figure 29a and
29b indicate that the 0.75 Df trlple-slotted bleed stator had a much lower loss

than the 0.75 Df double-slotted blowing stator.

The comparison presented in Figures 29a and 29b indicates that the 0.75

Df trlple-slotted bleed stator was superior in performance to the 0.75 Df
' double-slotted blowing stator.

Effect of Loading--0.65 Df Single-Slotted Blowin_ Stator vs 0.75 Df
Single-Slotted Blowing Stator

The performance of these two configurations is shown in Figures 30a and
30b. Comparison of the two configurations is made by relating blade element
performance of each configuration to its design performance. A summary of
blade element performance at design corrected speed as shown in Figure 30a
follows:

0.65 Df slngle-slotted
blow|ng 3. ? O. 042 O, 47 16.5 O_

0.65 Df design 3.0 0.040 0.60 10.0

0. "/5 Dt single-slotted
blowing 2.0 0. 078 ....... 5, 6

_ 0.75 Df design -3.0 0.042 0.70 18.0

• Tb.ese values have been extrapolated from data in Figure 30a.

From this summary° the 0.65 Df single-slotted blowing stator demon-
strated a minimum loss coefficient and a minimum loss incidence angle equal

to its design loss coefficie_It and incidence angle within the data accuracy.
Deviation angle at minimum loss incidence angle was much higher than de-

sign deviation angle for the 0.65 Df s_ator, and diffusion factor at minimum
loss incidence angle was much lower than design diffusion factor. The 0.75

Df single-slotted blowing stator _,,ad a minimum loss coefficient approximately
twice as high as its design loss coefficient. Deviation angle at minimum
loss incidence angle was less than design deviation angle for thls 0.75 Df

• stator. There are insufficient data presented in Figure 30a to define i2, poe

and to compare range• Data presented in Figure 30b indicate that the 0.65 Df
:, single-slotted blowing stator demonstrated a minimum loss parameter about .,,

equal to its design loss parameter, while the 0. "15 Df single-slotted blowing

i stator demo, lstrated loss parameters much greater than its design loss param-

:i,li , eter.
i
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The comparison presented by Figures 30a and 30b indicates that, rela-
tive to design values, the 0.65 Df single-slotted blowing stator had generally _
better loss characteristics and poorer deviation characteristics than the

0.75 Df single-slotted blowing stator.
!

EVALUATION OF BLADE BOUNDARY LAYER CONTROL METHODS

!
The blade element performance data presented in this report indicate

that significant improvements in stator range and loss at a given level of load-

ing can be realized by using an effective means of stator blade boundary layer
control. Of the two methods presented here, bleeding off the momentum de-
ficient air adjacent to the blade surface appears to be a more effective method

of controlling the boundary layer as compared with reenergizing the air by
tangential slot blowing. Although these conclusions appear valid for this
particular situation, a generalization regarding the merits of bleed control

versus blowing control cannot be made until a valid method for optimizing the
slot design and location for maximum effectiveness is available. This will

require a more detailed knowledge of the boundary layer parameters for these
parameters determine the location and characteristics of the boundary layer
control device. These boundary layer parameters, in turn, depend on the
static pressure distribution about the airfoil.

Airfoil static pressure distributions are f:,ndamental consequences of
air foil shapes and are usually determined either by direct measurement in
cascades or are the result of interpolations and extrapolations of existing
cascade data; this was the case for the stator designs reported here. A de- '
tailed explanation in Reference 1 describes how the static pressure distri- _i ....._

butions at design incidence about the 0.65 D r and 0.75 Dr stator blades were _i
estimated. These static pressure distributions presented in the form of

pressure coefficient versus percent chord are shown in Figures 31 and 32

of this report and will be the basis of the analytic investigation that follows. !
These static pressure distributions at the stated loading levels are based on
the premise that some means of boundary layer control exists to prevent sepa-
ration from occurring and also on the assumption that the presence of a means
of boundary layer control would not affect the distributions themselves.

The boundary layer analysis originally used in the slot design procedure
was an integral solution as formulated by Truckenbrodt (Reference 10). This
basic momentum integral technique was used in conjunction with a compres-
sible transformation to predict the streamwise slot location and related

boundary layer parameters. However, in light of the sophistication of current
turbulent boundary layer computational techniques, a review and comparison
of the slot location as predicted by the Truckenbrodt method was initiated.

The methods used here to reassess the points of boundary layer separation
are the Mellor-Herring incompressible technique (Reference 11), the Herring
compressible technique (Reference 12), and the McNally compressible tech-
nique (Reference 13).

. ., _J

i " J
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The Mellor-Herring incompressible method provides a numerical solu-

tion to the boundary layer equations through the use of the effective viscosity
hypothesis of Mellor (Reference 14). The basic numerical scheme can be

e

described as an implicit scheme resulting in an ordinary differential equation
at each station which is solved according to a Runge-Kutta method adapted to

the laminar and turbulent boundary layer equations. The Herring compres-
sible analysis is conceptually similar to the incompressible mode. The

coupled equations of mass, momentum, and energy are solved numerically,

again using the effective viscosity concept. The McNally calculat_an is a so-,
lution to the momentum integral and moment of momentum integral equa-

. tions, using a compressible boundary layer transformation. This method is
similar in approach to that of Sasman and Cresci (Reference 15). The re-

suits of these three more sophisticated methods are compared to the original
Truckenbrodt calculations for the 10, 50, and 90% annulus height sections

at design conditions as shown in Figures 33 through 35 for the 0.65 Df stator
and Figures 36 through 38 for the 0.75 Df stator. The criterion used to de-
termine the separation point for the Mellor-Herring incompressible, Herring
compressible, and McNally compressible methods is defined as that point

! where the wail shear stress, _w, and, correspondingly, the skin friction
coefficient, Cf, approach zero. The Truckenbrodt method assumes that

separation occurs when the incompressible shape parameter Hi -- 2.2.

It can be seen from Figures 33 through 38 that the current techniques are
, in close agreement and indicate separation about 20% chord further

downstream than the original Truckenbrodt prediction. This result implies
I that when using the same boundary layer control design procedure at design
i incidence as reported in References 1 and 2, slot location should be further

downstream than originally thought. Whether the conservative upstream
! location of the single slots could have tripped the boundary layer (particu-

larly in the case of tangential blowing) and caused premature separation
! or whether the blowing slot was located too far upstream to be effective at

! design conditions can only be speculated. The blade element data do te:,d to
t support these possibilities. However, better performance should have been

measured at high incidence angles where the upstream location of the slot
: would be advantageous. Blade surface static pressure measurements were made
, to better define the points of separation. Unfortunately, this information was,

for the most part, rendered useless because of excessive data scatter. This
. scatter was primaci]y a result of locating the 12 suction surface static taps on

four separate blades. Figures 39a and 39b present two experimental 0.75 Df un-
slotted static pressure distributions, and show the points of separation as pre-
dicted by the four boundary layer analysis methods considered. The three more
sophisticated analysis methods are in close agreement with each other and with
experimental observations, while the Truckenbrodt solution appears too con-

servative. The fact that he pressure distribution shown in Figure 39b indicates
severe upstree.m separation is attributed to its close proximity to the end wall
which exhibited a considerable effect on the blade surface flow distributions.
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Based on this study, the following conclusions are drawn.

1. Of the current boundary layer methods studied--Mellor-Herring in-
compressible, McNalty compressible, and Herring compressible--

all predicted nearly the same location of suction surface separation
and were in close agreement with experimental observations. This

suggests that the relatively simple Mellor-Herring incompressible
method is adequate for freestream Mach numbers up to 0.7.

2. The ability to accurately predict the separation point is highly de-
I

pendent on possessing a good design or experimental freestream pres-
sure distributionsince this distributionsupplies most of the informa-

tion for the boundary layer calculation.

3.The use uf current methods of predicting boundary layer separation

would increase the chances of successful application of boundary layer
control.

4. The leading edge pressure distributionas well as the zone of transition

from laminar flow to turbulent flow should be investigatedin more de-

tailin order to study their effectson separation.

SUMMARY OF RESULTS

Compamson of the performance of the six stator configurations was re-

stricted to the midsp_n blade element. Stator hub and tip wall bleeds were used
to minimize end wall effects. Comparisons at midspan indicate the following
results.

1. A significant improvement in blade element performance was
achieved with suction surface boundary layer bleed.

• Milumum values of loss coefficient for the 0.75 Df triple-slotted
bleed stator were about one-third of those for the 0.75 Df un-
slotted stator.

• The useful operating range of incidence angle for the 0.75 Df triple-
slotted bleed stator was judged to be about 4 degrees larger than

that of the 0.75 Df unslotted stator.
• The 0.75 Df triple-slottedbleed stator achieved about 10gohigher

diffusionfactor thro,lghoutits useful operating range as compared

_ with the 0.75 Df unslotted stator.

_!. • Deviation angle for the 0.75 Df triple-slottedbleed stator was about o

3 degrees lower than that for the 0.75 Df unslotted stator. •

2. Blade element performance with suction surface boundary layer blow-

ing was generally inferior to that of the unslotted st_tor. _

, • Minimum values of loss coefficientfor both 0.75 Df slottedblowing _

stators were l_gher than those of the 0.75 Df unslotted stator. (
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• The negative incidence limit of useful operating range for the 0.75

Df unslotted stator extended approximately 8 degrees further in the

negative incidence direction than that of either 0.75 Df slotted blow-
ing stators. <

• The minimum loss point for both 0.75 Df slotted blowing stators
was shifted to a much higher incidence angle than that of the 0.75

Df unslotted stator.

3. Design of the slottedblowing stator configurations may not have
been optimum.

• At relatively negative incidence angle, the inferior perfornmnce

of both 0.75 Df slotted blowing stators when compared with the

0.75 Df unslotted stator suggests a problem with design of the
leading edge and/or the l_lowing flow intake slot located near tile
lead_ ng edge.

• The current boundary layer prediction methods .re in close agree-
ment with experiemental observations. The current methods pre-
dict suction surface boundary layer separation about 20% of chord

further downstream than the method used for design.

,:g- 4. Over the range of bleed rates tested, the 0.65 Df single-slotted

_'_ bleed stator demonstrated no trend of performance within Limits of
data accuracy. When bleed rate was reduced from the design level

to about one-half of the design level, the 0.75 Df triple-slotted
bleed stator demonstrated a loss in performance but was still

superior to the 0.75 Df unslotted stator. At zero bleed ratc the .:

0.75 Df triple-slottedbleed stator was inferiorto the 0.75 Df un-
slottedstator.

i

An improvement of about 2% in stage efficiencywas aclReved at design
speed as stator end wall bleed was increased. This gain in perfor_aance was
the result ox bleeding the hub end wall;the tip end wall did not respond to
bleed.

v

. {
f
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APPENDIX ::_

PERFORMANCE EQUATIONS _

The following overall and blade element performance parameters were i
calculated for the analysis of test data and the evaluation of the slotted and :.
unslotted stator performance.

WEIGHT FLOW

Overall performance is presented as a function of corrected weight flow
defined as ._

Wa4 - i
8 (All

;_DIABATIC "-FFICIENCY i

Adiabatic efficiency for the inlet guide vane, rotor, and stator com- i
bination is !

i

(P3, ma_ "_ i

@ad, ST : (A21 l
,T3, ma -i

TO ..,.

DIFFUSION FACTOR

The stator diffusion factor i_ defined as

v3 vo.2 - vo,3
Dr3 : 1 ---- +. (A3)

V 2 2_V2

DEVIATION ANGLE

The sta_or deviation angle is defined as
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J

INCIDENCE ANGLE
$

The stator incidence angle is defined as
{

,=. !

i2 : "2 ¢A5)
TOTAL PRESSURE LOSS COEFFICIENT

a) The local total press,tre loss coefficient for the stator is defined as

'- P3 _:

P2 0k6) ":
:. (@_ -- ,,,,

-_' i

I- +-----1
2 i

b) The blade element total pressure loss coefficient for the stator is de- i
fined as

" P3,_ ma

_ P3 i fs
; =3 = ' -1' '" (AT)

,i 1-[1 +V (M2,2]" 7-'_

}
• MASS AVERAGED TOTAL PRESSURE _.
t

Mass averaged totalpressure is defined aa

_- (P3)i (@3V3Ae) i
i=l

- , ,, (A8): P3 ma
n

(P3V3Ae)i

: i=l

. where (Ae)i= 1 is the first partial elemental area between adjacent blades
and _e)i..n zs the last partial elemental area between adjacent blades. The
number of elemental areas between adjacent btades and their values depends

, on rake probe angle _.
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PRESSURE COEFFICIENT

Pressure coefficient (S) is defined as

P2 " P
S -- tag)

q2

where

/

- p is *.he stator blade surface static pressure

1

q2 =_- P2V2 2

SKIN FRICTION COEFFICIENT

The skin friction coefficient is defined as

fw
Cf = , (AIO)

1---pv2 ._
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Figure 2. Velocity diagram nomenclature.
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Figure 3. Stator aerodynamic and blade geometric nomenclature.

I

1971009274-011



"0 =o.3, ,el:eo.,°
Vo- ,28.5 ,e;.52.3e"

Mz I = 0. 467 _ _I -- 20. 47"

,,,.o.,,, ,,¢/:'/I.."' .."%, ,,=,,.oooM_ = 0.641 .... k' R|. 15.000
-, : o.4,8 _Y _/ I", =°v_"'_ _-_%._, a,=o"

-- _.__2 = 1095.02
Df = 0.4,4

V_, =189.87 UI =!095.02

' M.zo_.,,o a_' .,e't574r
M 1 : O.8m

.,.o.,, "Y 2,'1 I(..".;;;:.=":1. _ ,,:,,.,,,
Df : o.4,8 Z" / I "_ ..... \ ..... _ "1: ""

- d, v
V0 1534.58 _ 2 =0"58

2 Ve, :208.83 U, • 1005,24
• lntermed/ate

..,. o.,. _,._ ai ai'"."
, -:,-o.428 ..,,..,,_ ._. _. a,-,,.,,"' '. _1 = 24 W; M1 = O.780 '_,k_

•_ o'_/ _/ !'" X".\% #2"so.04•
Ml • 0.615

R 2 - 11. 658.,.0. ./- .,.,.,,'
_, .o.,2, ve_,., . __.. j - .__;u_.,_,_,. -2-,'-v

2 VOI= 2H. 11 Ul = 906. 31
M_n _ ,,ton

,.,_o.,,8 _#; .el-u.sr
.., o.,, _:_gY-I__¢" p,...o,:

"°"Z 7 l:::::.i,:,"""'"Ml = 0.515 R 1" 11.648

M3 = 8,701 al = 8"16'

Of = 0. 418 Ve2= 613. 44 _ ; -, _l,_,, o_v. 1% m 2 = :P'47'
VOl =248 4:_ Us :833. 88

• v

Intermediate _ ! = 43.04"

M,,.o.,n _; #'2:,.,r
Ms| • O.4_0
Mi "o_, _ - 18.,"

.,.o,,. ,,...,.Ml 0. 838 R l = 10. 111

M2 =0.748 5 . R I " 10,1138
_1 " 7" 04'

D' =O 411 d _.TYzt "4'8 ;' l _U 1 - 4_ .1.- 3" 30'OTf_ - 7v8.
_1 " - 175.9# .... V, veloCity -- ft/ie_

ve t u I • 763. 41 it, r_ttue - inches
Hub section

Notes: (I) Since the radial component of velocity is re'atlvely
small, values of V are shown In velocity diagrams in
places where Vez , literally, should be shown.

t (2) Radii at the hub section Include an aerodynamic block-
age factor and are not physical dimensions, i

Figure 4. Velocity diagrams for flow generating.rotor. (_eo4 _.
°, I'

|

36 :

1971009274-012



37

1971009274-013



Mz2 = 0.392 _, _
_" _2 = 49. 26 °

Me3 = O.372 b_,/_ Vz2 = 445.73 /_3 : O°

/M 2 = 0.600 _'1, Yz3 = 432.71 R2= 15.000

R3 : 15.000

M 3 = 0.3'/2 V 3 = 432.71 a2=0°

Df : 0.680 ct3 = O°
=

v02 = _1725 v03 o
Tip section

M,,,: o.41o _//_ ,s#,3:: 0o49"orMe3 = 0.364 Vz2 = 463.53 R2 = 1_.817

M2 : 0.626 ,,,,,/ = 422.26
i Vz3 R 3 : 13. 869

- M3 = 0.364 _ V 3 = 422.26 _ 2 = 0°56'
Df = 0.691 L

V0 : 534.58 V : 0 _3 "_ &33
-_ 2 03

Intermediate

Mz2 : 0.429 _,. /_ ,82 = 50.04 °

Mt$ = 0.365 ,_k_by _2j_b tq3 : 0"Vs| = 480.87 R2 = 13.558
M 2 = 0.666 ,_ /

M 3 = 0.365 4,_/// Vz 3 = 421.86 H3 : 12.630

/ ,V3 421.86 = 1° 59
Df = 0.702 = a2

= 0 a 3 . 0047'
= 573.69 Vo$vo2
.Mean section

"'2 --o.4s7 __._ Pz-_ #3#2==0"st""°Mz3 = 0.359 %k Vs2 = 487.87 It 2 = 11._6

M 2 = 0.701 _._,/
,_ Vs$ = 415.41 R3 = 11.713

M S = 0.359 / = 20 'V3 = 415.41 ,z I 47

D, = 0.722 / & ,,z 3 = 49

"_ V01 = "13.44 VO$ = 0
lntsrmedtgte

: 0.440 _'] _:t : ss.9s"
M% o.34s d' //_nR_'I #3 " o"

_3 _ ,48 .s'_'J// '-' I v. - 488.,1 R1 . ,o..eM1 O.

M3 _ 0.345 '_ _'_ Vs$ = 399.51 R$ = i0.'--'FI:j ,V 3 = 399.61 a2 = 3_30
D_ o.76

a 3 = O"41

V. velocity-it/sac V01 = 671.34 V03 • 0
R, red/us-inches Hub aJecUon

Notes: (I) Since the radial component of velocity is relatively
small, values of V are shown In velocity diagrams in
places where VOz, literally, should be shown.

(2) Radii at the hub section include an aerodynamic block-
age factor and are not physlcal dimenslons. 11060-6

Figure 6. Velocity diagrams for O.75 hub Df stator.

x

38

' MI I

1971009274-014



1r

4

39.25% chord

_---- 60% chord -_ _ <
u. 12_s

• _. 0285 _"
U. 0255

" _. 0. 65 Df single-slotted bleed d. 0. 75 DI single-slotted blowing

[

69.5% chord------_

_-42rT ch°rd -_ O. 1265 /_.'_/_- 40'_, chord -_| ,I "

o.126_..._s .
O. 1235 _ .

0.20 r.

O.0225 / _ L-I. 00 R

b. 0.65 Df single-slotted blowing
e, 0.75 Df double-r_otted blowing

_----- 61_ chord ---'---* t

_ Leading edge Trailing edge-_ 1%chord_., e

25% __ _three sl_ts)
c, 0.75 Df mmlotted 0.0075 i

f. 0. 75 Df triple-slotted bleed i

eoeo-w t

i.
. Figure 7. Typical airfoilsech,,nsfor slottedand unslottedstators. I
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Figure 16. 0.75 Df triple-slotted stator--bleed rate vs stage " !_
pressure ratio--mean bleed rate.
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Figure 18. 0.65 Df single-slotted etator--bleed rate vs stage
pressure ratio--2/8 optimum bleed rate.
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Figure 19. 0.65 Df single-slotted stator--bleed rate vs stage

pressure ratioB1/3 optimum bleed rate.
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Figure 21a. Blade element performance---comparison of 0.75 Dfil
triple-slotted bleed stator vs 0.75 Df unslotted stator

,'_ at 60% streamline.
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Figure 21b. Loss parameter vs diffusion factor--comparison of
O. "/5Df triple-slotted bleed stator with O,_5 Df
unslotted stator at 50% streamline.
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OA 90e_ N/_/_ Filled symbols--0. 75 Df single-slottedSO_ N/_ blowing stator

0.is _ 6o_s/V_-DeMipa l_oint Tailed symbols--minimum loss points
0.16

O.14

i_/I ,,"'"

t_ 0,11

u O.10 I

| 0.08

0.06 !

0.04
i

O.Oi

0
-11t -10 4 I; Ii

6060-12--24

Incidence angle, ill -- degrees

Figure _3a. Blade element performance--comparison of 0.'/5 Dt
single-slotted blowing stator vs 0. '/5 Dt unslotted
stator at 50% streamline.
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1

Symbols i
!

100% Nigh. i

. _ _o_./vi_ !8o%./_/_

, Design point i

Open symbols--0.75 Df unslotted stator
Filled symbols--0.75 Df single-slotted blowing s_tor
Tailed symbols--minimum loss points

O.06

_ 0.05

¢Q.
m
8 0.04

I 0.03
i_.

I
__ E! o.o2 _,
V

0.01

_, 0 0. _ 0.4 0.6 0. 8 1.0
!,

Diffusion factor, Df8 6060-25

i

Figure 23b. Loss parameter vs diffusion factor--comparison of

0.75 Df single-slotted blowing stator with 0.75 Df
• unslotted stator at 50% streamline.
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6060-26 -28

IncidenceJmlle, t:l--- dqp'ees

Figure 24a. Blade element performance--comparison of 0. _G Df

double-slotted blowing stator vs 0.7G D t unslotted
stator at 50% streamline.
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Symbols

loo%

s0%N/V

Design point
0

Open symbols--0.75 Df unslotted stator
Filled symbols-0. '/5 D_ double-slotted blowing stator
Tailed symbols--mininlum loss points

0.06 m

b
-_ 0.05,
m

_,i 8 0.04

'_, I O.03

_i_ o.o_

0.01

_ 0
0 0.2 0.4 0.6 0.8 1.0 '

_ Diffusion factor, Df3!i 6060-29

1 • Figure 9-4b. Loss parameter vs diffusion factor--comparison of 0.'15 Df

double-slotted blowing stator with 0.75 Df unslotted
stator at 50% streamline.
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Symbols

I00% N/g_ 1

90% NI%/0 '.80%Nlq_

_ eo%N/_..Design point

Open symbols-- 0.75 Df single-slotted blowing stator
Filled symbols-- 0.75 Df double-slotted blowing staler
Tailed symbols--minimum loss points

O.06 '

b

.,_ 0.05

M

8 o.o4

t_ 0.03

O.Ol

0.01

0
0 O.Z 0.4 0.6 0.8 1.0

Dihusion factor, Df$
6060-33

• Figure 25b. Loss parameter vs diffusion factor--comparison of 0. 75 Df
single-slotted blowing stator with 0.75 Df double-slotted

, blowing stator at 50_o streamline.
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Symbols

100%N/q_

90%NIV_SO%N/q_

eO%N/q_..Design point
I •

Open symbols--0. 65 Df sint_te-slotted, optimum
stator bleed

Half ftUed symbols--0.65 Df single-slotted, 2/3
optimum st_tor bleed

Filled symbols--0.65 Df single-slotted, 1/3
optimum stator bleed

Tailed symbols--minimum ]oss points

_, 0. 06

_ _ "_ 0.05

0.04%

_: '_ ,. _ "

_ ",_-_.:: O.02

...._ I_

_"_'_ _ 0.01
o'_:_, _:

__; !!_ 0 O.2 O.4 O.6 O.8 1.0

Diffusion factor, Df
• 3 6060-37

Figure 26b. Loss parameter vs diffusion factor--co',npamison of 0.65 Df ,.

. single-slotted stator at three bleed rates at 50% streamline.
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Symbols i

o loo%.NO
00%N/VQ8o%N/V_

X_ 0o%_/VQDesign point
I *

Open symbols--0.65 Df single-slotted blowing stator
Filled symbols-0.65 Df single-slotted bleed stator
Tailed symbols--minimum loss points

O,06

0.05

o.ca

_ I_ 0.03
i r.,(I)

_ _ 0.02i I

i o iii: 0 0.2 0.4 0.6 0.8 1.0

! i!
r

Diffusion factor, Df$i_ 6060-41 t
't

!

,, " Figure 27b. Loss parameter vs diffusion factor--comparison of 0. 65 Df
single-slotted blowing stator with 0.65 Df single-slotted

. bleed stator at 50_ streamline.
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Symbols
ii

100%NIVJ_

_ 90%N/t/Q80%N/_/_
Design point

Open symbols--0.75 Df triple-slotted--optimum bleed
Half filled symbols--0.75 Df triple-slotted--mean bleed
Filled symbols---0.75 Df triple-slotted--zero bleed
Tailed symbols--minimum loss points

0. 06

00 05

1

_t

O.03

o.oa i""
0.01

i

0
0 0.2 0.4 0.8 0.8 1.0 i

Diffusion factor, _D_3 6060-45

, Figure 28b. Loss parameter vs diffusion factor--comparison of 0.75 Df i
triple-slotted stator at three bleed rates at 50% streamline.
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_O 100%N/V_. Open symbols--0. 75 Df double-slotted blowing stator

90_ N/_f_ Filled symbols--0. "/5 Df triple-slotte_;_ bleed st_tor80¢_N/yr_ Tailed symbols--minimum 10ss points

0,16

0.0_

0
-15 -10 -5 0 §

Incidence angle, iI -- degrees _060-46-48

Figure 29a. Blade element performance--comparison of 0.75 Df
double-slotted blowing stator vs 0. V§ Df triple-slotted
bleed 8tator at 50% streamline.
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Symbols
|l

100°_ N//_
• _ 9o_/V_

8o_N/V'O
, X Design point

Open symbols--0. 75 Df double-slotted blowing stator
Filled symbolsL--0.75 Df triple-slotted bleed stator
Tailed symbols--minimum loss points

0.06

i o.o5
i _ o.o4

t_ 0.03

i O.OZ
0.01I

0

i 0 0.2 0.4 0.6 0.8 1.0
Diffusion factor, _D_$ 6060-49J

5

I Figure 29b. Loss parameter vs diffusion factor---comparison of 0.75 Df

double-slotted blowing stator with 0. 75 Df triple-slot_ed

i • bleed stator at 50% streamline.
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O.OR

0
-10 -§ 0 5 10

Incidence angle, 12 -- degrees
: "6080-50--_52

!'i Figure 30a. Blade element performance---effect of loading--0.65 Df
L

i single-slotted blowing stator vs 0.75 Df single-slotted• blowing stator at 50_ streamline.
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Symbols

o 100%NIV._.

80%N/_/_

Design point
t

Open symbols--0, 65 Df single.slotted blowing stator
• Filled symbols--',). 75 Df single-slotted blowing stator
Tailed sy_-_cl_--mintmfJm loss points

Diffusion factor, Df$ 6060- 53

• Figure S0b. Loss parameter vs diffusion factor--effect of loading--0. 65 Dr.
single-slotted blowing _._tor vs 0. '/5 Df sidle-slotted blowing
stator at 50% streamline.
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Figure 33. 0.'/5 Df ntator--preenure coefficient dtntrtbutton
• (extrapolated from caecade data), t
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Figure 35. Comparison of the analytic methods used to predict boundary
layer separation-- 0.65 Df stator--90% annulus height.
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O.005

Herring
, . --------- McNally

O.004
Note: Separation occurs

, _ O.003

Estimated separation pointt by Truckenbrodt methodi 0

i O. 002

I O. 001
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_ 0 oi 10 20 30 40 SO 60 70 80 90 100
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I Chord, %

: 6060-61

I

•i Figure 36. Comparison of the analytic methods used to predict boundary
layer eeparatton-- 0.75 Df stator---10% annulus height.•
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O.005 _iI

Herring

. i
O.004

Note: SeparaUon occurs i
u_ atc_- o I

i:

0.003 iEstimated separation point :
by Truckenbrodt method

O.002

!
't

"" |

• 0.001 I"'

!
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Chord, %

6060-60

Figure 37. Comparison of the analytic methods used to predict boundary
layer separation-- 0.75 Df stator--50% annulus height.
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O.005

Herring
• ------- McNally

•---. .... • Mellor-Herrlng I:! ,:
0. 004 Note: Separation occurs i!i

•_ o. 003

Estimated separation point
o by Truckenbrodt method -_

O.002

0. 001 i

o _
0 10 20 30 40 50 60 70 80 90 100

Chord, %

6060-59

Figure 38. Comparison of the analytic methods used to predict boundary

layer separation-- 0.75 Df stator---90% annulus height.
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M2 = 0. 740 ] . _!

2.5 i2 = -3.77 °
Separation by

_'2.0 Truckenbrodt Separation by

method Herring, McNallyt
and Mellor-Herring

1.5 methods
o

1.0

_ O.5

o i
0 30 40 60 80 .100 I

Chord, % _i

?...'_,
6060-62 i

Figure 39a. 0.75 Df stator---experimental pressure coefficient
distributton---50_ annulus height. I
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75 Df Unslotted stator

M2 = O. 724
f

2.5, .Separation by i 2 = -1o5 2 °iTruckenbrodt

2.0 by

McNalIy,1.5 and Mellor-Herring

1.0
I,i

_ 0.5

_' O0 20 40 60 80 100

_ Chord, _ 6M0-87

Figure 39b. 0.75 Df stator--experimental pressure coefficient
distribution--90% annulus height.
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Table II ....

Stator exit circumferential rake probe angles used
for tests of stator blade configurations. _

_q_Tube axis

Tangential direction .-_ !_ (positive as shown)

i
i

Circumferential rake

(shown in design position) _!

Center of rotation !
J

Stator confi_ration . Rake setting a__0.nglet_..( !
0.75 Df unslotted 4 -9 ° and .7 ° !
O.75 Df triple-slotted bleed e .9 ° I
0. 75 Df single-slotted blowing S .7 °
0. 75 Df double- slotted blowing 8 .8 °
0.65 De single-slotted bleed s +19° and +28" t
0.65 D_ single-slotted blowing7 +19° i
Design rake angle for 0. 65 and 0.75 Df 9° 26'

• Notes: (1) Superscripts denote references. _
(2) The 0. 75 Df tmslotted stator was tested twice and at slightly different

rake angles. The 0.65 Df single-slotted bleed stator also was tested twice.
The initial rake setting angle was at 19°. Based on yaw probe measurements
at Station 3, a 28° rake setting angle was selected for the second test•

6060-12
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